

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

2021

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 25 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	D✓	(1)
1.6	A✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 First aid basic treatment:

- Examination ✓
- Diagnosis ✓ •
- Treatment ✓ .

2.2 Drill press (Already been switched on):

- Never leave the drill unattended while in motion. \checkmark ٠
- Switch off the drill when leaving. \checkmark •
- Use a brush or wooden rod to remove chips. \checkmark •
- When reaching around a revolving drill, be careful that your clothes do • not get caught in the drill or drill chuck. \checkmark
- Don't stop a revolving chuck with your hand. \checkmark •
- Don't adjust the drill while working. ✓ ٠
- Don't open any guard while in motion. \checkmark •
- Keep hands away from action points. ✓ •
- Do not force the drill bit into the material. \checkmark •
- Apply cutting fluid if required. \checkmark •

2.3 Isolation of electrode holder:

To prevent electric shock. ✓

2.4 Disadvantages of the process layout:

- Production is not always continuous. ✓ •
- Transportation costs between process departments may be high. \checkmark •
- Additional time is spent in testing and sorting as the product moves to the • different departments. ✓
- Damage to fragile goods may result from extra handling. \checkmark •
- 2.5 Advantages of the product layout:
 - Handling of material is limited to a minimum. \checkmark •
 - Time period of manufacturing cycle is less. \checkmark •
 - Production control is almost automatic. ✓ •
 - Control over operations is easier. ✓ •
 - Greater use of unskilled labour is possible. ✓ •
 - Less total inspection is required. ✓ •
 - Less total floor space is needed per unit of production. ✓ •
 - Reduction in manufacturing costs. ✓ •

DBE/2021

(3)

(2)

(1)

(2)

(2)

[10]

(Any 2 x 1)

(Any 2 x 1)

(Any 2 x 1)

(3)

(1)

(3)

QUESTION 3: MATERIALS (GENERIC)

3.1 Heat-treatment:

- Heat the metal slowly to a certain temperature. ✓
- Soak the metal for a certain period to ensure a uniform temperature. ✓
- Cool the metal at a <u>certain rate to</u> room temperature. ✓

3.2 **Quenching mediums:**

- Water ✓
- Brine ✓
- Liquid salts ✓
- Oil ✓
- Soluble oil and water \checkmark
- Sand ✓
- Molten lead ✓
- Air ✓
- Lime ✓

(Any 3 x 1) (3)

(Any 1 x 1)

3.3 **Annealing:**

- To relieve internal stresses of the steel ✓
- Soften steel to make machining possible \checkmark
- Make steel ductile ✓
- Refine grain structure ✓
- Reduce brittleness ✓

3.4 **Carbon steels:**

- Low carbon steel ✓
- Medium carbon steel ✓
- High carbon steel \checkmark

3.5 Iron-carbon equilibrium diagram:

- A Percentage carbon / carbon content ✓
- B Temperature in °C ✓
- C AC3 line / Higher critical temperature ✓
- D AC1 line / Lower critical temperature ✓ (4)
 [14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	B✓	(1)
4.2	A✓	(1)
4.3	B✓	(1)
4.4	C✓	(1)
4.5	D ✓	(1)
4.6	D✓	(1)
4.7	C✓	(1)
4.8	A✓	(1)
4.9	B✓	(1)
4.10	C✓	(1)
4.11	B✓	(1)
4.12	B✓	(1)
4.13	A✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 **Disadvantages of compound slide method:**

- The automatic feed of the machine cannot be used. \checkmark
- Causes poor finish. ✓
- Only short tapers can be cut. ✓
- It causes fatigue in the operator. \checkmark

(Any 3 x 1) (3)

5.2 **Taper calculations:**

5.2.1 **Diameter of taper:**

$$\tan \frac{\theta}{2} = \frac{D-d}{2 \times l}$$

$$\tan \frac{10}{2} = \frac{165-d}{2 \times 210} \checkmark$$
420
$$\tan 5^{\circ} = 165 - d$$

$$d = 165 - 36,75$$

$$d = 128,25 \text{ mm} \checkmark$$
(4)

5.2.2 Tailstock set-over:

$$x = \frac{L (D-d)}{2 \times l} \checkmark$$

$$x = \frac{325 (165 - 128, 25)}{2 \times 210} \checkmark$$

$$x = 28,44 \text{ mm} \checkmark$$
(3)

5.3 **Calculation of parallel key:**

5.3.1 Width =
$$\frac{D}{4}$$

= $\frac{55}{4}$ \checkmark
= 13,75 mm \checkmark

5.3.2 Thickness =
$$\frac{D}{6}$$

= $\frac{55}{6}$ \checkmark
= 9,17 mm \checkmark (2)

Copyright reserved

(2)

5.3.3	Lenght = $1,5 \times$ diameter of shaft	
	=1,5×55 ✓	
	=82,5 mm ✓	(2)
	tages of up-cut milling: avier cuts can be taken. ✓	

- When hard steels are cut, the total cutting pressure is absorbed by the material at the back of the edge. ✓
- When milling material with a hard scale, the cut is started under the scale where material is softer, extending the life of the cutter. ✓
- A courser feed can be used. \checkmark

5.4

- The strain on the cutter and arbor is less. \checkmark
- Less vibration experienced on machine. \checkmark

(Any 2 x 1) (2)

[18]

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

Number of teeth:

6.1 Gear calculations:

6.1.1

- Module = $\frac{PCD}{T}$ $T = \frac{PCD}{m} \checkmark$ $=\frac{136}{4}$ =34 teeth ✓ (2) 6.1.2 **Dedendum:** =1,25(m)Dedendum = 1,157(m)=1,25×4 ✓ =1,157×4 ✓ OR = 5 mm ✓ = 4,63 mm 🗸 (2) 6.1.3 **Outside diameter:** = m(T+2)OD = PCD + 2(m)= 4 (34 + 2) 🗸 = 136 + 2(4) \checkmark OR =144 mm ✓ = 144 mm ✓ (2) 6.1.4 **Circular pitch:** $CP = m \times \pi$
 - $=4\times\pi$ \checkmark = 12,57 mm ✓ (2)

(6)

6.2 **Dove tail calculations:**

$$w = 190 - 2(DE)$$

M = w + 2 (AC) + 2 (R) or M = w + 2 (AC + R)

6.2.1 Minimum width of dove tail (w):

Calculate DE:

$\tan \alpha = \frac{DE}{AD}$ \checkmark		$\tan\theta = \frac{AD}{ED} \checkmark$
AD DE = AD tan α	OR	$\tan 60^\circ = \frac{38}{ED}$
=38 tan30° ✓		$ED = \frac{38}{\tan 60^\circ} \checkmark$
=21,94 mm ✓		tan60° = 21,94mm ✓

$$w = 190 - 2(DE) \checkmark$$

= 190 - 2(21,94) \sqrt{
= 190 - 43,88}
= 146,12 mm \sqrt{

6.2.2 **Distance over the rollers (M):**

Calculate AC:

$$\tan \alpha = \frac{BC}{AC} \checkmark \qquad \tan \theta = \frac{CA}{BC} \checkmark$$
$$AC = \frac{BC}{\tan \alpha} \checkmark \qquad OR \qquad CA = BC \tan \theta \checkmark$$
$$= \frac{15}{\tan 30^{\circ}} \qquad = 25,98 \text{ mm} \checkmark$$

$$M = w + 2 (AC) + 2(R) \checkmark \qquad M = w + 2 (AC + R) \checkmark = 146, 12 + 2(25,98) + 2 (15) \checkmark = 146, 12 + 51,96 + 30 = 228,08 mm \checkmark \qquad M = w + 2 (AC + R) \checkmark = 146, 12 + 2 (25,98 + 15) \checkmark = 146, 12 + 81,96 = 228,08 mm \checkmark \qquad (6)$$

(5) **[28]**

6.3 Milling of spur gear:

6.3.1 Indexing:

Indexing
$$=$$
 $\frac{40}{n}$
Indexing $=$ $\frac{40}{A}$
 $=$ $\frac{40}{160}$ \checkmark
 $=$ $\frac{1}{4} \times \frac{6}{6}$
 $=$ $\frac{6}{24}$ \checkmark

Approximate indexing:

No full turns and 6 holes on a 24-hole circle \checkmark

OR

No full turns and 7 holes on a 28-hole circle \checkmark (3)

6.3.2 Change gears:

$$\frac{D_{DR}}{D_{DN}} = (A - n) \times \frac{40}{A}$$

$$\frac{D_{DR}}{D_{DN}} = (160 - 163) \times \frac{40}{160} \checkmark$$

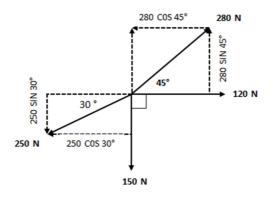
$$= -3 \times \frac{40}{160} \checkmark$$

$$= \frac{-120}{160}$$

$$= \frac{3}{4} \times \frac{8}{8} \checkmark$$

$$\frac{D_{DR}}{D_{DN}} = \frac{24}{32} \checkmark$$

Please turn over


DBE/2021

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1	Reading:			
	Reading =	7,90 mm		(2)
7.2	 Select The sp hand v The lose Release Measure 	rdness test: the desired load to apply to the specimen. \checkmark becimen is raised to be in contact with the Brinell ball by turni wheel. \checkmark ad is then applied for about 15 - 30 seconds \checkmark se the load from the specimen. \checkmark are the diameter of the impression. \checkmark nine the Brinell hardness number. \checkmark	ng the	(6)
7.3	 Ultima Elonga Break Limit o 	tress \checkmark te / maximum tensile stress \checkmark ation percentage \checkmark stress \checkmark f proportionality \checkmark limit \checkmark \checkmark ty \checkmark	3 x 1)	(3)
7.4	Screw thre	ead micrometer:		
	Identify: 7.4.1	Screw thread micrometer ✓		(1)
	Function: 7.4.2	Measure the pitch diameter \checkmark of a screw thread.		(1) [13]

QUESTION 8: FORCES (SPECIFIC)

8.1 **Magnitude and direction of the equilibrant:**

8.1.1 Sum of the horizontal components (HC):

$$\sum HC = 280\cos 45^{\circ} + 120\cos 0^{\circ} - 150\cos 90^{\circ} - 250\cos 30^{\circ}$$

= 197,99 + 120 - 0 - 216,51
= 101,48 N \checkmark

OR

Force	HC (x)	Total
120 N	120cos0º ✓	120N
280 N	280cos 45º ✓	197,99 N
250 N	250cos 210º ✓	-216,51 N
150 N	150cos 270º	0 N
	Tota	ll: 101,48 N ✓

(4)

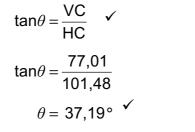
```
8.1.2 Sum of the vertical components (VC):
```

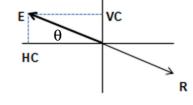
$$\sum VC = 280 \sin 45^{\circ} + 120 \sin 0^{\circ} - 150 \sin 90^{\circ} - 250 \sin 30^{\circ}$$
$$= 197,99 + 0 - 150 - 125$$
$$= -77,01 \text{ N} \checkmark$$

0	R
\sim	ιι

Force	VC (y)		Total
120 N	120 sin0º		0N
280 N	280sin45⁰ ✓		197,99 N
250 N	250sin210º ✓		-125 N
150 N	150sin270º ✓		-150 N
		Total:	-77,01 N ✓

(4)

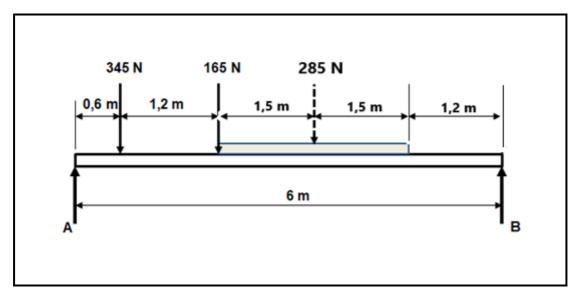

8.1.3 Magnitude of the equilibrium force:


$$E^{2} = VC^{2} + HC^{2} \checkmark$$

$$E = \sqrt{(77,01)^{2} + (101.48)^{2}} \checkmark$$

$$= 127,39 \text{ N } \checkmark$$
(3)

8.1.4 **Direction of the equilibrium force:**



E = 127,39 N at 37,19° N of W \checkmark

(3)

8.2 Magnitudes of the reactions in supports A and B:

Calculate A: Take moments about B:

 $\sum CWM = \sum ACM$ $A \times 6 = (285 \times 2,7) + (165 \times 4,2) + (345 \times 5,4) \checkmark$ $A \times 6 = 769,5 + 693 + 1863 \checkmark$ $A \times 6 = 3325,5$ $A = \frac{3325,5}{6} \checkmark$ $A = 554,25 \text{ N } \checkmark$

Calculate B: Take moments about A:

$$\sum CWM = \sum ACM$$
(345 × 0,6)+(165 × 1,8)+(285 × 3,3) = 6 × B ✓
207 + 297 + 940,5 = 6 × B ✓
1444,5 = 6 × B
 $\frac{1444,5}{6} = B \checkmark$
240,75 N = B ✓

(8)

The resistance area of the bush:

8.3 Stress and Strain:

8.3.1

$$A = \frac{\pi (0.058^2 - 0.042^2)}{4}$$

$$A = \frac{\pi (0.058^2 - 0.042^2)}{4} \checkmark$$

$$A = 1,26 \times 10^{-3} \text{ m}^2 \checkmark \qquad (2)$$
8.3.2 The stress in the material:

$$\sigma = \frac{F}{A}$$

$$= \frac{50 \times 10^3 \checkmark}{1,26 \times 10^{-3} \checkmark}$$

$$= 39682539,68 \text{ Pa}$$

$$= 39,68 \text{ MPa } \checkmark \qquad (3)$$
8.3.3 Strain:

$$\varepsilon = \frac{\Delta l}{l}$$

$$= \frac{0.975 \checkmark}{68} \checkmark$$

$$= 14,34 \times 10^{-3} \checkmark$$
(If any unit indicated, then NO mark for final answer) (3)
8.3.4 Young's modulus:

$$E = \frac{\sigma}{\varepsilon}$$

$$= \frac{39,68 \times 10^6 \checkmark}{10^3 \checkmark}$$

$$= 2,77 \times 10^9 \text{ Pa } \checkmark$$

$$= 2,77 \text{ GPa}$$
(3)
[33]

Copyright reserved

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 Lack of preventative maintenance:

- Risk of injury or death. \checkmark
- Financial loss. ✓
- Damage to parts. ✓
- Loss of production time. \checkmark

9.2 Malfunctioning of chain drives:

- Uncovered chain drives not cleaned. \checkmark
- Tensioning device is not working efficiently. ✓
- Chain is not inspected regularly for elongation. ✓
- Chain drive is not aligned. ✓
- Wear and tear of chain. ✓
- Wear of sprocket teeth. ✓
- Lack of lubrication. ✓
- Chain drive has been overloaded. \checkmark

9.3 Wear on a gear drive system:

- Checking and replacement of lubrication levels. \checkmark
- Ensuring that gears are properly secured to shaft. \checkmark
- Cleaning and replacement of oil filter. \checkmark
- Reporting excessive noise, wear, vibration and overheating for expert attention. ✓
- Cleaning of gears regularly. \checkmark

9.4 **Property of materials:**

9.4.1 **Polyvinyl chloride (PVC):**

- Can be re-heated and re-shaped \checkmark
- Flexible ✓
- Rubber like substance and makes a dull sound when dropped. \checkmark
- Can be modified to suit most applications. \checkmark
- Can be welded (plastic welding). ✓
- Can be bonded with an adhesive. ✓
- Weather resistant ✓
- Water proof ✓
- Easy to work with. ✓
- Light weight ✓
- Recyclable ✓
- Corrosion resistant ✓

(Any 2 x 1) (2)

Please turn over

(Any 2 x 1) (2)

(Any 2 x 1) (2)

(Any 2 x 1)

(2)

	9.4.2	 Carbon fibre: Cannot be re-heated and re-shaped ✓ Tough and strong material. ✓ Light weight ✓ Weather resistant ✓ Heat resistant ✓ Enhance strength of plastic by entrenchment. ✓ Highly electrically conductive ✓ 	(2)
	9.4.3	 Bakelite: Electrically non-conductor (electrical insulator) ✓ Heat resistant ✓ Well moulded into specific shapes ✓ Weather resistant ✓ Cannot be re-heated and re-shaped ✓ 	(2)
9.5	Thermo compos	oplastic composites or thermo-hardened (thermosetting)	(~)
	9.5.1	Vesconite: Thermoplastic ✓	(1)
	9.5.2	Glass fibre: Thermo-hardened/Thermosetting ✓	(1)
	9.5.3	Carbon fibre: Thermo-hardened/Thermosetting ✓	(1)
9.6	Uses of	f materials.	
	9.6.1	 Teflon: Orthopaedic and prosthetic appliances ✓ Hearing aids ✓ Joints ✓ Upholstery ✓ Mechanical parts (e.g., taps and bearings) ✓ Electrical insulation ✓ 	

● Non-stick coatings ✓

(Any 1 x 1) (1)

9.6.2 Carbon fibre:

- Sporting and leisure equipment like: Tennis rackets, squash rackets, badminton rackets, golf clubs, hockey sticks ✓
- Model airplanes ✓
- Bicycle frames ✓
- Ski's ✓
- Surf boards ✓
- Boat masts ✓
- Compressor blades ✓
- Self- lubricating gears ✓
- Artificial satellites ✓
- Helicopter blades ✓
- Car bodies
- Airplane parts (fuselage) ✓

(Any 1 x 1) (1)

9.6.3 **Nylon:**

- Bushes ✓
- Gears ✓
- Pulleys ✓
- Fishing line ✓
- Ropes ✓

(Any 1 x 1) (1)

[18]

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Square Thread:

10.1.1 **Mean diameter:**

Pitch =
$$\frac{\text{Lead}}{\text{Number of starts}}$$
$$= \frac{40}{2} \checkmark$$
$$= 20 \text{ mm} \checkmark$$
$$D_{\text{m}} = \text{OD} - \frac{\text{P}}{2}$$
$$= 85 - \frac{20}{2} \checkmark$$
$$= 75 \text{ mm} \checkmark$$

(4)

10.1.2 Helix angle of the thread:

$$\tan \theta = \frac{\text{Lead}}{\pi \times D_{\text{M}}}$$

$$= \frac{40}{\pi \times 75} \checkmark$$

$$\theta = \tan^{-1}(0,169765272)$$

$$= 9,63^{\circ} \text{ or } 9^{\circ}38' \checkmark \qquad (4)$$

10.1.3 **Leading tool angle:** Leading tool angle = 90° - (helix + clearance angle)

$$= 90^{\circ} - (9,63^{\circ} + 3^{\circ}) \checkmark$$

= 77,37° or 77°22' \lambda (2)

10.1.4 **Following tool angle:** Following tool angle = 90° + (helix angle - clearance angle)

$$= 90^{\circ} + (9,63^{\circ} - 3^{\circ}) \checkmark$$

= 96,63° or 96°38' \lambda (2)

10.2 Screw thread label:

- A. Pitch diameter/mean/effective \checkmark
- B. Helix angle ✓
- C. Pitch / Lead ✓
- D. Root/Root length ✓

10.3 Uses of square thread:

- Vice screws ✓
- Brake screws ✓
- Lead screws of lathe machines ✓
- Scissor jacks ✓
- Milling machine table feed screws ✓
- Hydraulic jacks (Adjustable top) ✓

(Any 2 x 1) (2)

Please turn over

[18]

(4)

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulic calculations:

11.1.1 **The fluid pressure in MPa:**

Area:
A_A =
$$\frac{\pi D_A^2}{4}$$

= $\frac{\pi (0,025)^2}{4}$ \checkmark
= 0,49 × 10⁻³ m² OR 4,9 1×10⁻⁴ m² \checkmark

Pressure:

$$P = \frac{F}{A}$$

= $\frac{1,32 \times 10^{3}}{0,49 \times 10^{-3}} \checkmark$
= 2,69 × 10⁶ Pa
= 2,69 MPa ✓ (4)

11.1.2 The diameter of piston B:

$$P_{B} = P_{A}$$

$$\frac{F_{B}}{A_{B}} = \frac{F_{A}}{A_{A}}$$

$$\frac{6,45 \times 10^{3}}{A_{B}} = \frac{1,32 \times 10^{3}}{0,49 \times 10^{-3}} \checkmark$$

$$\frac{6,45 \times 10^{3}}{A_{B}} = 2,69 \times 10^{6}$$

$$A_{B} = \frac{6,45 \times 10^{3}}{2,69 \times 10^{6}} \checkmark$$

$$A_{B} = 2,40 \times 10^{-3} \checkmark$$

$$A_{B} = \frac{\pi D_{B}^{2}}{4}$$

$$D_{B} = \sqrt{\frac{4A_{B}}{\pi}} \checkmark$$

$$= \sqrt{\frac{4(2,40 \times 10^{-3})}{\pi}} \checkmark$$

$$= 0,05528 \text{ m}$$

$$= 55,28 \text{ mm} \checkmark$$

11.2 Advantages of chain drive system over belt drive systems:

- No slipping or creep occurs. ✓
- Higher efficiency. ✓
- Longer life span. ✓
- Does not generate heat. ✓
- Does not undergo the same degrading effects of what time has on belts. \checkmark
- Much stronger. ✓
- Faster speeds can be obtained. \checkmark

(Any 2 x 1) (2)

(6)

Copyright reserved

11.3 **Functions of hydraulic reservoir:**

- A fluid storage tank. ✓
- Promotes air separation from the fluid. \checkmark
- Support for the pump and electric motor. \checkmark
- Promotes heat dispersion. \checkmark
- Acts as a base plate for mounting control equipment. \checkmark
- It allows for expansion or contraction of the hydraulic system. \checkmark

(Any 2 x 1) (2)

11.4 **Application for hydraulic systems:**

- Machine tools ✓
- Clutch systems ✓
- Brake systems ✓
- Aircraft 🗸
- Jacks ✓
- Missiles ✓
- Ships ✓
- Earth moving equipment \checkmark
- Punch machines 🗸
- Turbines ✓
- Tractor lifts ✓
- Car lifts ✓
- Machine vices ✓
- Jaws of life ✓
- Trains ✓

11.5 Belt drive:

11.5.1

Rotational frequency: $N_{DR} \times D_{DR} = N_{DN} \times D_{DN}$ $N_{DR} \times 95 = 85 \times 255 \checkmark$ $N_{DR} = \frac{85 \times 255}{95} \checkmark$ $N_{DR} = 228,16 \text{ r/min}$ OR $N_{DR} = 3,8 \text{ r/sec} \checkmark$ (Any 1 x 1) (1)

(3)

11.5.2 Speed ratio:

Speed ratio = $\frac{\text{Diameter of driven pulley}}{\text{Diameter of driver pulley}}$

Speed ratio = $\frac{255}{95} \checkmark$ Speed ratio = 2,68 : 1 \checkmark

OR

Speed ratio = $\frac{\text{Frequency of driven pulley}}{\text{Frequency of driver pulley}}$ Speed ratio = $\frac{228}{85} \checkmark$ Speed ratio = 2,68:1 \checkmark

(3)

11.6 Gear drive:

11.6.1 **Rotation frequency:**

$N_{A_{-}}$ Product of the number of teeth on driven gears
$\overline{N_{F}}^{-}$ Product of the number of teeth on driving gears
$\frac{N_{F}}{N_{A}} = \frac{Product \text{ of the number of teeth on driving gears}}{Product \text{ of the number of teeth on driven gears}}$
$N_{F} = \frac{T_{A} \times T_{C} \times T_{E} \times N_{A}}{T_{B} \times T_{D} \times T_{F}} \checkmark$
$30 \times 20 \times 50 \times 2500$
$=\frac{30\times20\times50\times2500}{40\times60\times70}\checkmark$
= 446,43 r/min
OR
= 7,44 r/sec 🗸

11.6.2 Gear ratio:

GearRatio =	Product of the number of teeth on driven gears
	Product of the number of teeth on driving gears
_	40 × 60 ×70 ✓
_	$\overline{30 \times 20 \times 50}$
_	168000
_	30000
=	5,6:1 🗸

OR

Speed ratio =
$$\frac{N_{input}}{N_{output}}$$

= $\frac{2500}{446,43}$ \checkmark
= 5,6:1 \checkmark

(3) **[28]**

TOTAL: 200

(4)